I2C(三) linux3.4(内核分析)
[TOC]
## (一)总线流程
可以看下总线的匹配函数
```c
struct bus_type i2c_bus_type = {
.name = "i2c",
.match = i2c_device_match,
.probe = i2c_device_probe,
.remove = i2c_device_remove,
.shutdown = i2c_device_shutdown,
.pm = &i2c_device_pm_ops,
};
```
### bus.probe
这里插入一下
`bus`
的`probe`
,简单的搜索`probe`
,可以在`drivers\base\bus.c`
搜索到一些东西,继续查看,可以看到有如下函数,也就是先执行总线的`probe`
,再执行具体驱动的`probe`
```c
driver_probe_device
> really_probe
> dev->bus->probe(dev)
> drv->probe(dev)
```
那么谁来调用这个
`driver_probe_device`
,搜索可以看到有以下函数调用,具体的`device_attach`
和`driver_attach`
就不深入了,水平还不够```c
static DRIVER_ATTR(bind, S_IWUSR, NULL, driver_bind);
>driver_bind
>driver_probe_device(drv, dev)
device_attach
>__device_attach
>driver_match_device 先匹配
>driver_probe_device(drv, dev)
driver_attach
>__driver_attach
>driver_match_device 先匹配
>driver_probe_device(drv, dev)
int driver_probe_device(struct device_driver *drv, struct device *dev)
>really_probe(dev, drv);
{
dev->bus->probe(dev)
drv->probe(dev)
}
```
### match
这里匹配的是
`dev `
的母体结构`client`
的成员`name`
与`driver`
的`id_table`
```c
static int i2c_device_match(struct device *dev, struct device_driver *drv)
{
//先找到 dev 的母结构 i2c_client的地址
struct i2c_client *client = i2c_verify_client(dev);
//通过 driver 找到 i2c_driver
driver = to_i2c_driver(drv);
if (driver->id_table)
return i2c_match_id(driver->id_table, client) != NULL;
> if (strcmp(client->name, id->name) == 0)
}
```
### i2c_device_probe
匹配之后,会调用这个函数,这个函数会这里会将
`client`
绑定具体的`driver`
,再调用实际驱动的`probe`
,```c
client->driver = driver;
driver->probe(client, i2c_match_id(driver->id_table, client));
```
```c
static int i2c_device_probe(struct device *dev)
{
struct i2c_client *client = i2c_verify_client(dev);
struct i2c_driver *driver;
int status;
driver = to_i2c_driver(dev->driver);
if (!driver->probe || !driver->id_table)
return -ENODEV;
// 这里会将client 绑定具体的driver
client->driver = driver;
if (!device_can_wakeup(&client->dev))
device_init_wakeup(&client->dev,
client->flags & I2C_CLIENT_WAKE);
dev_dbg(dev, "probe\n");
status = driver->probe(client, i2c_match_id(driver->id_table, client));
if (status) {
client->driver = NULL;
i2c_set_clientdata(client, NULL);
}
return status;
}
```
## (二)client注册
这里的client,指的是能够挂接到总线上的设备,或者是说你强制认为总线上就有这个设备.具体的结构如下:
```c
struct i2c_client {
unsigned short flags; /* div., see below */
unsigned short addr; /* chip address - NOTE: 7bit */
/* addresses are stored in the */
/* _LOWER_ 7 bits */
char name[I2C_NAME_SIZE];
struct i2c_adapter *adapter; /* the adapter we sit on */
struct i2c_driver *driver; /* and our access routines */
struct device dev; /* the device structure */
int irq; /* irq issued by device */
struct list_head detected;
};
#define to_i2c_client(d) container_of(d, struct i2c_client, dev)
```
-
`struct i2c_adapter *adapter`
指的是挂载的具体的哪个总线-
`struct i2c_driver *driver`
指的是我们用什么驱动,这里指的是自己的字符设备或者块设备等-
`struct device dev`
这个结构比较关键,这个就是总线设备模型`dev---driver`
部分中左侧`dev`
部分- 当我们挂载到bus上的时候,通过bus.probe就会将对应的
`driver`
附到`client.driver`
上了### 方式(一)静态加载
#### i2c_register_board_info
这种方式是编译到内核,注册信息
```c
i2c_register_board_info
```
我们一般使用如下方式
```c
//arch\arm\mach-s3c24xx\mach-mini2440.c
static struct i2c_board_info mini2440_i2c_devs[] __initdata = {
{
I2C_BOARD_INFO("24c08", 0x50),
.platform_data = &at24c08,
},
};
static void __init mini2440_init(void)
{
i2c_register_board_info(0, mini2440_i2c_devs,
ARRAY_SIZE(mini2440_i2c_devs));
}
```
具体是怎么注册的?实际上是将具体的这个硬件信息先构造成
`i2c_devinfo`
结构,再放入到一个全局的链表中```c
i2c_register_board_info(int busnum,
struct i2c_board_info const *info, unsigned len)
{
if (busnum >= __i2c_first_dynamic_bus_num)
__i2c_first_dynamic_bus_num = busnum + 1;
for (status = 0; len; len--, info++) {
struct i2c_devinfo *devinfo;
devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
devinfo->busnum = busnum;
devinfo->board_info = *info;
//这是一个全局的链表,也就是先分配一个i2c_devinfo.board_info 使用的就是单板传递的信息
list_add_tail(&devinfo->list, &__i2c_board_list);
}
return status;
}
```
这个全局的链表内容是这样的
```c
struct i2c_devinfo {
struct list_head list;
int busnum; //链表上的序号
struct i2c_board_info board_info;
{
char type[I2C_NAME_SIZE]; //设备名,
unsigned short flags; //将来传递给client
unsigned short addr; //设备地址
void *platform_data;
struct dev_archdata *archdata;
struct device_node *of_node;
int irq;
};
};
```
#### i2c_scan_static_board_info
谁会来调用这个链表呢?也就是根据这个信息添加client到总线上,很显然,是我们在注册总线的时候,来去遍历这个信息,也就是函数
`i2c_scan_static_board_info`
```c
static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
{
struct i2c_devinfo *devinfo;
list_for_each_entry(devinfo, &__i2c_board_list, list) {
if (devinfo->busnum == adapter->nr
&& !i2c_new_device(adapter,
&devinfo->board_info))
dev_err(&adapter->dev,
"Can't create device at 0x%02x\n",
devinfo->board_info.addr);
}
}
```
这个函数根据这个链表,通过
`i2c_new_device`
来操作,提前透露一下,这个函数是构造`client`
,加入到总线设备的dev链表中去我们从
` if (devinfo->busnum == adapter->nr`
这里可以看出来适配器的选择,也就是-
`devinfo->busnum`
也指的是总线的编号-
`adapter->nr `
应该是适配器的编号,也就是总线的编号#### i2c_new_device
这里我们根据
`i2c_board_info >构造链表__i2c_board_list `
来创建一个实际的`client`
,然后将这个`client`
的元素`dev`
挂载到总线设备模型的dev上```c
struct i2c_client *
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
{
struct i2c_client *client;
int status;
client = kzalloc(sizeof *client, GFP_KERNEL); 先分配结构体
// 指定具体的adapt适配器
client->adapter = adap;
// 指定挂载在总线设备平台上的 platform_data ,挂载在总线平台上的是dev 而不是 client
client->dev.platform_data = info->platform_data;
// 这个数据属于架构的数据
if (info->archdata)
client->dev.archdata = *info->archdata;
//具体硬件信息
client->flags = info->flags;
client->addr = info->addr;
client->irq = info->irq;
strlcpy(client->name, info->type, sizeof(client->name));
//地址合法性检测
/* Check for address validity */
status = i2c_check_client_addr_validity(client);
if (status) {
dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
goto out_err_silent;
}
/* Check for address business */ 7位地址和10位地址判断
status = i2c_check_addr_busy(adap, client->addr);
if (status)
goto out_err;
//设置具体总线平台的类型,节点,设置名字
client->dev.parent = &client->adapter->dev;
client->dev.bus = &i2c_bus_type;
client->dev.type = &i2c_client_type;
client->dev.of_node = info->of_node;
//kobject.name =%d-%04x 适配器.nr- client->addr(10位地址还要|0xa0000)
/* For 10-bit clients, add an arbitrary offset to avoid collisions */
dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
client->addr | ((client->flags & I2C_CLIENT_TEN)
? 0xa000 : 0));
//注册client->dev
status = device_register(&client->dev);
if (status)
goto out_err;
dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
client->name, dev_name(&client->dev));
return client;
}
```
-
`client->dev.parent = &client->adapter->dev;`
这里将总线设备的这个元素只想来适配器的`dev`
#### i2c_register_adapter
那么谁来调用这个静态扫描的函数呢?很显然是在注册适配器的时候,也就是注册I2C控制器
```c
if (adap->nr < __i2c_first_dynamic_bus_num)
i2c_scan_static_board_info(adap);
```
#### 小结
单板信息最终会加入到这个链表,注册
`adapt `
的时候会扫描这个链表 生成`client`
,将这个`client.dev`
挂载到 总线平台设备的` dev`
链表上,那么我们如何去找到这个client,在这里有一个宏 ```c
#define to_i2c_client(d) container_of(d, struct i2c_client, dev)
```
这里的
`i2c_board_info.type==i2c_client.name`
用作总线设备的匹配### 方式(二)指定设备
这个方式实际上就是跳过通过单板信息构造链表,直接调用
`i2c_new_device`
来构造`client`
,加入到总线设备模型的`dev`
链表中,`i2c_new_probed_device`
则是先判断下设备地址是否存在再来创建,这个函数还能指定自定义的地址检测方式```c
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
i2c_new_probed_device(struct i2c_adapter *adap,
struct i2c_board_info *info,
unsigned short const *addr_list,
int (*probe)(struct i2c_adapter *, unsigned short addr))
{
if (!probe)
probe = i2c_default_probe;
if (i2c_check_addr_busy(adap, addr_list[i]))
...
probe(adap, addr_list[i])
return i2c_new_device(adap, info);
}
```
具体的实例代码如下
```c
static struct i2c_board_info at24cxx_info = {
I2C_BOARD_INFO("at24c08", 0x50), //设置tyep 也就是后来赋值给client的name
#define I2C_BOARD_INFO(dev_type, dev_addr) \
.type = dev_type, .addr = (dev_addr)
};
static struct i2c_client *at24cxx_client;
static int at24cxx_dev_init(void)
{
struct i2c_adapter *i2c_adap;
i2c_adap = i2c_get_adapter(0);
at24cxx_client = i2c_new_device(i2c_adap, &at24cxx_info);
i2c_put_adapter(i2c_adap);
return 0;
}
/// 检测地址
static struct i2c_client *at24cxx_client;
static const unsigned short addr_list[] = { 0x60, 0x50, I2C_CLIENT_END };
static int at24cxx_dev_init(void)
{
struct i2c_adapter *i2c_adap;
struct i2c_board_info at24cxx_info;
memset(&at24cxx_info, 0, sizeof(struct i2c_board_info));
strlcpy(at24cxx_info.type, "at24c08", I2C_NAME_SIZE);
i2c_adap = i2c_get_adapter(0);
at24cxx_client = i2c_new_probed_device(i2c_adap, &at24cxx_info, addr_list, NULL);
i2c_put_adapter(i2c_adap);
if (at24cxx_client)
return 0;
else
return -ENODEV;
}
```
### 方式(三)用户空间
直接在
`shell`
下操作文件```c
# 创建
echo at24c08 0x50 > /sys/class/i2c-adapter/i2c-0/new_device
# 删除
echo 0x50 > /sys/class/i2c-adapter/i2c-0/delete_device
```
搜索下
`new_device`
,实际最终调用函数`i2c_sysfs_new_device`
,这个函数内部也是调用`i2c_new_device`
```c
static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
static DEVICE_ATTR(delete_device, S_IWUSR, NULL, i2c_sysfs_delete_device);
```
### 方式(四)遍历适配器
前面三个都是指定适配器去挂接设备,那么假设不知道适配器,我们如何去遍历适配器,自动识别出在那个适配器上然后去挂接上
`client`
呢?这里使用`i2c_add_driver`
#### 注意
实际上我们的适配器也是挂载到设备平台
`dev`
链表中,通过`type`
来区分#### **简介**
1. 使用
`i2c_add_driver`
注册用户驱动2. 匹配已有的挂载
`client`
,调用`probe`
3. 遍历左侧的
`dev`
链表,挑选`adapt`
,来识别驱动自身指定的`address_list`
,如果识别到设备存在4. 调用驱动的
`detect`
来做进一步检测,设置`i2c_board_info.type`
,赋值`client`
做匹配5. 使用
`i2c_new_device`
来挂载这个`client`
,这里会和`i2c_driver`
的`id_table`
比较,执行驱动的`probe`
这里一定会匹配上的,因为client.name就是
`i2c_board_info.type`
也就是`id_table.name`
#### 代码注释(可以看下后面的设备驱动章节)
```c
i2c_add_driver
i2c_register_driver
a. at24cxx_driver放入i2c_bus_type的drv链表
并且从dev链表里取出能匹配的i2c_client并调用probe
driver_register
b. 对于每一个适配器,调用__process_new_driver
对于每一个适配器,调用它的函数确定address_list里的设备是否存在
如果存在,再调用detect进一步确定、设置,然后i2c_new_device
/* Walk the adapters that are already present */
i2c_for_each_dev(driver, __process_new_driver);
//下面这个函数是总线设备的通用函数 ,注释上的意思应该就是
// 在某类设备总线上,从 start的dev开始遍历,执行以fn为函数的,data为参数的回调i2c_driver
// 这里也就是对于 i2c_bus_type 上的dev 执行 __process_new_driver 参数是driver也就是 i2c_driver
//int bus_for_each_dev(struct bus_type *bus, struct device *start,void *data, int (*fn)(struct device *, void *))
>bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
//可以先看一下__process_new_driver ,按照之前的注释 data是i2c_driver ,也就是 参数是 __process_new_driver
__process_new_driver
//这里的dev 是指的适配器,实际上适配器和设备都是挂载在一个链表上的,根据type分辨
// 确保遍历的dev 是适配器类型
if (dev->type != &i2c_adapter_type)
return 0;
i2c_do_add_adapter
/* Detect supported devices on that bus, and instantiate them */
i2c_detect(adap, driver);
for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
err = i2c_detect_address(temp_client, driver);
/* 判断这个设备是否存在:简单的发出S信号确定有ACK */
if (!i2c_default_probe(adapter, addr))
return 0;
memset(&info, 0, sizeof(struct i2c_board_info));
info.addr = addr;
//这里是我们自己的检测函数
// 设置info.type
err = driver->detect(temp_client, &info);
i2c_new_device
```
#### 代码举例
```c
static struct i2c_driver at24cxx_driver = {
.class = I2C_CLASS_HWMON, /* 表示去哪些适配器上找设备 */
.driver = {
.name = "100ask",
.owner = THIS_MODULE,
},
.probe = at24cxx_probe,
.remove = __devexit_p(at24cxx_remove),
.id_table = at24cxx_id_table,
.detect = at24cxx_detect, /* 用这个函数来检测设备确实存在 */
.address_list = addr_list, /* 这些设备的地址 */
};
//用作 dev 和 driver 的匹配,这里如果能识别,肯定赋值个 client.name
static const struct i2c_device_id at24cxx_id_table[] = {
{ "at24c08", 0 },
{}
};
static const unsigned short addr_list[] = { 0x60, 0x50, I2C_CLIENT_END };
去"class表示的这一类"I2C适配器,用"detect函数"来确定能否找到"address_list里的设备",
如果能找到就调用i2c_new_device来注册i2c_client, 这会和i2c_driver的id_table比较,
如果匹配,调用probe
```
## (三)适配器
> drivers\i2c\busses\i2c-s3c2410.c
注册适配器最终会调用
`i2c_driver.detect`
来设置具体的匹配的参数`i2c_client.type`
,,挂载`client`
到链表然后调用驱动
`i2c_driver.probe`
注册字符设备驱动等### 引入
驱动首先从入口开始看起,可以看到是
`platform`
框架,也就是驱动入口执行函数是`driver.probe`
```c
static int __init i2c_adap_s3c_init(void)
{
return platform_driver_register(&s3c24xx_i2c_driver);
}
subsys_initcall(i2c_adap_s3c_init);
static struct platform_driver s3c24xx_i2c_driver = {
.probe = s3c24xx_i2c_probe,
.remove = s3c24xx_i2c_remove,
.id_table = s3c24xx_driver_ids,
.driver = {
.owner = THIS_MODULE,
.name = "s3c-i2c",
.pm = S3C24XX_DEV_PM_OPS,
.of_match_table = s3c24xx_i2c_match,
},
};
static struct platform_device_id s3c24xx_driver_ids[] = {
{
.name = "s3c2410-i2c",
.driver_data = TYPE_S3C2410,
}, {
.name = "s3c2440-i2c",
.driver_data = TYPE_S3C2440,
}, { },
};
```
### s3c24xx_i2c_probe
1. 设置具体的
`adapt`
结构2. 设置中断
3. 使用
`i2c_add_numbered_adapter`
或者`i2c_add_adapter`
来注册这个`adapt`
4. 使用
`of_i2c_register_devices`
会调用`i2c_new_device`
添加`client`
到链表```c
static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
struct s3c24xx_i2c *i2c;
struct s3c2410_platform_i2c *pdata = NULL;
struct resource *res;
int ret;
if (!pdev->dev.of_node) {
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data\n");
return -EINVAL;
}
}
i2c = devm_kzalloc(&pdev->dev, sizeof(struct s3c24xx_i2c), GFP_KERNEL);
i2c->pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (pdata)
memcpy(i2c->pdata, pdata, sizeof(*pdata));
else
s3c24xx_i2c_parse_dt(pdev->dev.of_node, i2c);
//设置adapt 的参数
strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));
i2c->adap.owner = THIS_MODULE;
// adap.algo 这是具体的硬件传输的函数
i2c->adap.algo = &s3c24xx_i2c_algorithm;
//数据传输重试次数
i2c->adap.retries = 2;
i2c->adap.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
i2c->tx_setup = 50;
spin_lock_init(&i2c->lock);
//初始化等待队列,这个在后续的休眠中使用,触发中断后休眠
init_waitqueue_head(&i2c->wait);
/* find the clock and enable it */
i2c->dev = &pdev->dev;
i2c->clk = clk_get(&pdev->dev, "i2c");
clk_enable(i2c->clk);
/* map the registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c->ioarea = request_mem_region(res->start, resource_size(res),pdev->name);
i2c->regs = ioremap(res->start, resource_size(res));
/* setup info block for the i2c core */
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &pdev->dev;
// 初始化I2c 寄存器 gpio复用
/* initialise the i2c controller */
ret = s3c24xx_i2c_init(i2c);
// 设置中断函数,真正的数据传输
i2c->irq = ret = platform_get_irq(pdev, 0);
ret = request_irq(i2c->irq, s3c24xx_i2c_irq, 0,dev_name(&pdev->dev), i2c);
ret = s3c24xx_i2c_register_cpufreq(i2c);
// 这里使用指定 adapt 编号的方式,也可以使用 i2c_add_adapter 来注册这个adapt
/* Note, previous versions of the driver used i2c_add_adapter()
* to add the bus at any number. We now pass the bus number via
* the platform data, so if unset it will now default to always
* being bus 0.
*/
i2c->adap.nr = i2c->pdata->bus_num;
i2c->adap.dev.of_node = pdev->dev.of_node;
ret = i2c_add_numbered_adapter(&i2c->adap);
//这个会挂接client 到链表
of_i2c_register_devices(&i2c->adap);
> i2c_new_device
platform_set_drvdata(pdev, i2c);
pm_runtime_enable(&pdev->dev);
pm_runtime_enable(&i2c->adap.dev);
dev_info(&pdev->dev, "%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));
clk_disable(i2c->clk);
return 0;
}
```
### 注册适配器
这里使用
`i2c_add_adapter`
或者`i2c_add_numbered_adapter`
来注册适配器,最终都是调用`i2c_register_adapter(adap)`
来注册适配器的#### i2c_register_adapter
这里的具体看代码注释,最终会调用
`__process_new_adapter`
,应该是要完成实际的驱动注册```c
static int i2c_register_adapter(struct i2c_adapter *adap)
{
rt_mutex_init(&adap->bus_lock);
mutex_init(&adap->userspace_clients_lock);
INIT_LIST_HEAD(&adap->userspace_clients);
//设置 adapt的dev.type,后续能够根据这个和client区别
// 注册adap->dev 到总线平台的左侧
dev_set_name(&adap->dev, "i2c-%d", adap->nr);
adap->dev.bus = &i2c_bus_type;
adap->dev.type = &i2c_adapter_type;
res = device_register(&adap->dev);
// 在系统初始化的时候,我们手动添加了一些外设信息,期望构造client加入到dev链表
// 如果没有合适的adapt,我们并不能将其构造为client加入,而是保留在链表中
// 我们新注册了一个adapt,理所当然需要使用这个新的adapt去尝试构造一个client
/* create pre-declared device nodes */
if (adap->nr < __i2c_first_dynamic_bus_num)
i2c_scan_static_board_info(adap);
// 针对链表上的所有 driver,调用adapt的硬件操作,执行__process_new_adapter
// 执行__process_new_adapter 应该是要调用驱动driver 的detect 来创建字符设备等驱动
bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
}
```
#### __process_new_adapter
- 这个函数是我们遍历总线的driver,执行这个函数,也就是遍历我们右侧的的
`i2c_driver`
- 这个函数从名字看就和
`__process_new_driver`
很像,从`bus_for_each_drv`
的注释看出来`data`
是作为回调的参数,也就是说最终是`i2c_do_add_adapter(to_i2c_driver(d), adapt);`
,可以看到`i2c_do_add_adapter`
的原型的第二个参数确实是`adapt`
```c
/**
* bus_for_each_drv - driver iterator
* @bus: bus we're dealing with.
* @start: driver to start iterating on.
* @data: data to pass to the callback.
* @fn: function to call for each driver.
*
*/
int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
void *data, int (*fn)(struct device_driver *, void *))
static int __process_new_adapter(struct device_driver *d, void *data)
{
return i2c_do_add_adapter(to_i2c_driver(d), data);
}
//上面的data也就是bus_for_each_drv的data 也就是最开始要注册的adapt
static int i2c_do_add_adapter(struct i2c_driver *driver,
struct i2c_adapter *adap)
```
#### i2c_do_add_adapter
这里函数的关键是
`i2c_detect`
,3.4内核的`driver->attach_adapter`
可以忽略了```c
static int i2c_do_add_adapter(struct i2c_driver *driver,
struct i2c_adapter *adap)
{
/* Detect supported devices on that bus, and instantiate them */
i2c_detect(adap, driver);
// 下面这个driver->attach_adapter 是2.6上的匹配到硬件地址后,
// 用来创建字符设备驱动等操作的函数,3.4内核上使用上面的 i2c_detect 来实现这个功能
// 一般不需要使用,可以看到结构定义是 __deprecated ,也就是不推荐的了
/* Let legacy drivers scan this bus for matching devices */
if (driver->attach_adapter) {
dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
driver->driver.name);
dev_warn(&adap->dev, "Please use another way to instantiate "
"your i2c_client\n");
/* We ignore the return code; if it fails, too bad */
driver->attach_adapter(adap);
}
return 0;
}
```
#### i2c_detect
这里先判断下
`adapt`
和`driver`
类型,然后构造一个临时的`client`
,地址是`driver->address_list`
中的列表,依次尝试`i2c_detect_address`
来检测```c
static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
{
const unsigned short *address_list;
struct i2c_client *temp_client;
int i, err = 0;
int adap_id = i2c_adapter_id(adapter);
address_list = driver->address_list;
if (!driver->detect || !address_list)
return 0;
/* Stop here if the classes do not match */
if (!(adapter->class & driver->class))
return 0;
/* Set up a temporary client to help detect callback */
temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
if (!temp_client)
return -ENOMEM;
temp_client->adapter = adapter;
// 创建一个临时的 client,使用 i2c_detect_address来尝试操作
for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
"addr 0x%02x\n", adap_id, address_list[i]);
temp_client->addr = address_list[i];
err = i2c_detect_address(temp_client, driver);
if (unlikely(err))
break;
}
kfree(temp_client);
return err;
}
```
#### i2c_detect_address
1. 这里会使用
`i2c_smbus_xfer `
来实际通信确保硬件存在2. 调用最后的 用户驱动
`i2c_driver.detect`
3. 成功后使用
`i2c_new_device`
安装`client`
到`dev `
链表,`i2c_new_device`
在上述章节回顾```c
static int i2c_detect_address(struct i2c_client *temp_client,
struct i2c_driver *driver)
{
struct i2c_board_info info;
struct i2c_adapter *adapter = temp_client->adapter;
int addr = temp_client->addr;
int err;
/* Make sure the address is valid */
err = i2c_check_addr_validity(addr);
if (err) {
dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
addr);
return err;
}
/* Skip if already in use */
if (i2c_check_addr_busy(adapter, addr))
return 0;
// 这里会使用 i2c_smbus_xfer 来实际通信确保硬件存在
/* Make sure there is something at this address */
if (!i2c_default_probe(adapter, addr))
return 0;
// 调用最后的 用户驱动 i2c_driver.detect
/* Finally call the custom detection function */
memset(&info, 0, sizeof(struct i2c_board_info));
info.addr = addr;
err = driver->detect(temp_client, &info);
if (err) {
/* -ENODEV is returned if the detection fails. We catch it
here as this isn't an error. */
return err == -ENODEV ? 0 : err;
}
// i2c_new_device 安装client 到dev 链表
/* Consistency check */
if (info.type[0] == '\0') {
dev_err(&adapter->dev, "%s detection function provided "
"no name for 0x%x\n", driver->driver.name,
addr);
} else {
struct i2c_client *client;
/* Detection succeeded, instantiate the device */
dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
info.type, info.addr);
client = i2c_new_device(adapter, &info);
if (client)
list_add_tail(&client->detected, &driver->clients);
else
dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
info.type, info.addr);
}
return 0;
}
```
#### i2c_driver.detect
接下去就是要分析用户的设备驱动
`i2c_driver.detect`
,**设置匹配参数**1. 用来判断那些可能设备地址相同的不同类型的设备.
2. 设置具体的
`i2c_board_info.type`
,这个参数会在`i2c_new_device`
赋值给`client`
,用作`i2c`
总线平台的匹配参数3. 这会触发
`i2c_driver`
的`probe`
### 接下去执行驱动probe
这里就是执行字符设备驱动的注册等了
### 硬件操作
硬件操作最后归结到接口
`master_xfer`
,I2C的传输到最后可以整理为1. 开始信号
2. 结束信号
3. ACK/NAK
4. 数据传输1字节,读写是根据起始信号决定
在官方的驱动中,使用中断来传输,传输中使用休眠唤醒
```c
//休眠
timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);
//完成后唤醒
wake_up(&i2c->wait);
// probe 时候申请中断
request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,pdev->name, i2c);
```
## 设备驱动
## (四)设备驱动i2c_driver
> drivers\misc\eeprom\eeprom.c
>
> drivers\misc\eeprom\at24.c
>
> misc 是杂项的意思
### 引入
从入口看起
```c
static int __init at24_init(void)
{
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
```
### 注册设备驱动
#### i2c_add_driver
```c
/* use a define to avoid include chaining to get THIS_MODULE */
#define i2c_add_driver(driver) \
i2c_register_driver(THIS_MODULE, driver)
```
#### i2c_register_driver
1. 注册驱动程序,智力应该就会去执行
`probe `
函数了2. 遍历这个驱动
`driver`
,执行`__process_new_driver`
```c
int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
{
int res;
/* Can't register until after driver model init */
if (unlikely(WARN_ON(!i2c_bus_type.p)))
return -EAGAIN;
/* add the driver to the list of i2c drivers in the driver core */
driver->driver.owner = owner;
driver->driver.bus = &i2c_bus_type;
// 注册驱动程序,智力应该就会去执行probe 函数了
/* When registration returns, the driver core
* will have called probe() for all matching-but-unbound devices.
*/
res = driver_register(&driver->driver);
// 遍历这个驱动,执行__process_new_driver
INIT_LIST_HEAD(&driver->clients);
/* Walk the adapters that are already present */
i2c_for_each_dev(driver, __process_new_driver);
return 0;
}
```
#### probe
综合来看这两个例子,
`probe`
里面就是创建字符设备驱动类似的操作,`at24`
里面的比较复杂,但都是一些具体的操作#### __process_new_driver
这个函数最终调用了
`i2c_do_add_adapter`
,也就是和注册适配器后的操作一致,挂接client,绑定client,driver,adapt```c
static int __process_new_driver(struct device *dev, void *data)
{
if (dev->type != &i2c_adapter_type)
return 0;
return i2c_do_add_adapter(data, to_i2c_adapter(dev));
}
```
这个函数理论上需要驱动实现
`detect`
,但是我在`at24.c`
里面没有找到,在`eeprom.c`
里面是有的,所以这个驱动应该是先有设备驱动和适配器,然后去手动构造`client`
,这样就是另外的路线了#### i2c_do_add_adapter
#### i2c_detect
#### i2c_detect_address
#### i2c_driver.detect
#### 接下去执行驱动probe
这几个函数都和注册适配器的是一样的,回去看上面的就可以了
## 构造设备驱动
### 方式(一) APP>驱动
> 参考内核文档 Documentation\i2c\smbus-protocol
这里就是在
`i2c_driver`
的`probe`
中注册我们真实的驱动程序,比如构造字符设备驱动程序,提供读写的接口即可在
`EEPROM`
的普通读写,可以使用以下简单的函数,参考`Documentation\i2c\smbus-protocol`
,`smbus`
是`i2c`
的一个子集```c
//读
i2c_smbus_read_byte_data(at24cxx_client, addr)
//写
i2c_smbus_write_byte_data(at24cxx_client, addr, data)
```
### 方式(二)使用i2c-dev
使用通用的一个驱动程序
`i2c-dev`
来控制总线,去读写设备.其实我们可以看到内核源码目录下有个`i2c-dev.c`
,就是这个文件,它类似一个通用的驱动.它实现了一个字符设备驱动,次设备号表示总线编号内核配置
```
Device Drivers
I2C support
<*> I2C device interface
```
```c
//i2c_dev->adap->nr 指定的adapt
static struct i2c_dev *i2c_dev_get_by_minor(unsigned index)
{
struct i2c_dev *i2c_dev;
list_for_each_entry(i2c_dev, &i2c_dev_list, list) {
if (i2c_dev->adap->nr == index)
goto found;
}
i2c_dev = NULL;
return i2c_dev;
}
static const struct file_operations i2cdev_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = i2cdev_read,
.write = i2cdev_write,
.unlocked_ioctl = i2cdev_ioctl,
.open = i2cdev_open,
.release = i2cdev_release,
};
```
可以看下源码,实际上最终也是调用类似的函数,注意这里面的
`i2cdev_read/i2cdev_write`
只是单纯时序上的读写,我们操作`EE`
的读操作实际上是需要先读再写地址的,所以不能用这个接口,应该用`i2cdev_ioctl`
```c
i2c_get_functionality
i2c_smbus_xfer
```
这里可以参考
> Linux设备驱动开发详解第2版-宋宝华.pdf > 15.4.3 Linux 的 i2c-dev.c 文件分析
## 关于设备驱动detect
我们在分析注册设备驱动以及注册适配器驱动的时候,最终都会调用
`i2c_driver.detect`
,这个函数会设置具体的`i2c_board_info.type`
,这个参数会在`i2c_new_device`
赋值给`client`
,用作`i2c`
总线平台的匹配参数这会触发`i2c_driver`
的`probe`
.但是我们在刚开始做的设置client的前三种方法,
`i2c_driver`
并没有设置`detect`
,也就是说在函数中不会执行到这个过程,我们从公共的入口`i2c_detect`
来看下,加入调试打印看看实际有没有执行```c
static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
{
const unsigned short *address_list;
struct i2c_client *temp_client;
int i, err = 0;
int adap_id = i2c_adapter_id(adapter);
address_list = driver->address_list;
if (!driver->detect || !address_list)
{
// 在这里加入打印,看看实际驱动的detect 有没有默认值
printk("no detect\n");
return 0;
}
else
{
//打印实际的detect
printk("detect is %p \n",driver->detect);
}
/* Stop here if the classes do not match */
if (!(adapter->class & driver->class))
return 0;
/* Set up a temporary client to help detect callback */
temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
if (!temp_client)
return -ENOMEM;
temp_client->adapter = adapter;
for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
"addr 0x%02x\n", adap_id, address_list[i]);
temp_client->addr = address_list[i];
err = i2c_detect_address(temp_client, driver);
if (unlikely(err))
break;
}
kfree(temp_client);
return err;
}
```
测试下代码
`1th`
,运行结果如下```shell
/mnt/iic/1th # insmod at24cxx_drv.ko
no detect
/mnt/iic/1th # insmod at24cxx_dev.ko
/home/book/stu/iic/1th/at24cxx_drv.c at24cxx_probe 13
------------------------------------------------------------
/mnt/iic/1th # insmod at24cxx_dev.ko
/mnt/iic/1th # insmod at24cxx_drv.ko
/home/book/stu/iic/1th/at24cxx_drv.c at24cxx_probe 13
no detect
```
可以看出来,不论是先加载
`dev`
还是先加载`driver`
,都不会有`detect`
,那为啥能正常工作执行`probe`
呢?流程应该是这样的:- 我们的
`i2c_detect`
实际上只是将`client`
挂接到`dev`
链表上,`i2c_client`
上的`driver`
驱动的依附是在`bus.probe=i2c_device_probe`
中实现的-
`dev`
与`driver`
匹配上就会执行驱动的probe,也就是执行打印所以:
1. 先加载
`drv`
时,运行到`i2c_detect`
时直接打印`no detect`
后退出,然后加载`dev`
后匹配执行驱动的`probe`
2. 先加载
`dev`
时,没有匹配不动作,加载`drv`
时,先匹配上了执行驱动的`probe`
,再去执行`i2c_detect`
,打印`no detect`
**补充:**
1. 可以看到
`i2c_detect`
最终目的是为了挂接`client`
,而我们手动创建`client`
使用了`i2c_new_device`
,跳过了这个步骤,所以也能运行.2. 这里要区分两个步骤
- 挂接
`client`
到 `dev`
链表,使用`i2c_new_device`
- 匹配
`client`
与`driver`
,使用的是`bus.probe`
3. 也就是说如果我们不使用
`i2c_new_device`
来手动创建设备挂接到`dev`
链表,就需要`detect`
来辅助内核挂接`client`
挂接## 系统信息查看
我们可以通过查看文件信息来查看具体的
`i2c`
设备1. 可以在
`/sys/bus/i2c/`
下查看设备文件,这里看出来适配器驱动与`client`
都属于`device`
,这里的`50`
是设备地址.`0`
是总线序号 ```shell
/mnt/iic/1th # ls /sys/bus/i2c/
devices drivers_autoprobe uevent
drivers drivers_probe
/mnt/iic/1th # ls /sys/bus/i2c/devices/
0-0050 i2c-0
/mnt/iic/1th # ls /sys/bus/i2c/drivers/
100ask at24 dummy
```
2. 查看已有的
`i2c`
总线 ```shell
#ls /sys/class/i2c-adapter/
i2c-0
```
3. 创建设备节点的
`new_device`
和`deleted_device`
位置 ```shell
#ls /sys/class/i2c-adapter/i2c-0/
delete_device name power uevent
device new_device subsystem
```
4. 这个文件夹实际的链接
` /sys/devices/platform/s3c2440-i2c/i2c-0`
```shell
/sys/class/i2c-adapter/i2c-0 这是一个链接文件 /sys/devices/platform/s3c2440-i2c/i2c-0
```
5. 查看我们的
`client`
```shell
/sys/devices/platform # ls
alarmtimer s3c2440-nand s3c24xx_led.1 soc-audio
power s3c2440-uart.0 s3c24xx_led.2 uevent
s3c2410-lcd s3c2440-uart.1 s3c24xx_led.3 wm8976-codec
s3c2410-ohci s3c2440-uart.2 s3c24xx_wm8976.0
s3c2410-wdt s3c24xx-iis samsung-audio
s3c2440-i2c s3c24xx_led.0 snd-soc-dummy
/sys/devices/platform/s3c2440-i2c # ls
driver i2c-0 modalias power subsystem uevent
/sys/devices/platform/s3c2440-i2c/i2c-0 # ls
0-0051 device new_device subsystem
delete_device name power uevent
这里的 0-0051 实际上就是我们挂载的clinet设备了
```
## 内核配置
如果要使用
`i2c_dev.c`
这个通用的驱动,可以查看同目录下的`Makefile`
,需要配置`obj-$(CONFIG_I2C_CHARDEV) += i2c-dev.o`
```makefile
────────────────────────────────────────────────────── Search Results ──────────────────────────────────────────────────────┐
│ Symbol: I2C_CHARDEV [=m] │
│ Type : tristate │
│ Prompt: I2C device interface │
│ Defined at drivers/i2c/Kconfig:39 │
│ Depends on: I2C [=y] │
│ Location: │
│ -> Device Drivers │
│ -> I2C support (I2C [=y])
```
关于适配器驱动,f看下
`drivers\i2c\busses\Makefile`
```makefile
obj-$(CONFIG_I2C_S3C2410) += i2c-s3c2410.o
```
也就是找到配置,去除这个
```shell
│ Symbol: I2C_S3C2410 [=y] │
│ Type : tristate │
│ Prompt: S3C2410 I2C Driver │
│ Defined at drivers/i2c/busses/Kconfig:601 │
│ Depends on: I2C [=y] && HAVE_S3C2410_I2C [=y] │
│ Location: │
│ -> Device Drivers │
│ -> I2C support (I2C [=y]) │
│ -> I2C Hardware Bus support
```
没有帐号? 立即注册